电子系统基础note
  • 前言
  • 😘Chapter 3 电路分析基础
  • 🥰Chapter 4 运算放大器
  • 🧐Chapter 5 RL 和 RC电路的固有响应和阶跃响应
  • 😫Chapter 7 正弦稳态分析
Powered by GitBook
On this page

Was this helpful?

Chapter 7 正弦稳态分析

by mjuicem

复数的基本概念

欧拉公式: ejφ=cosφ+jsinφe^{j\varphi} = cos\varphi + jsin\varphi ejφ=cosφ+jsinφ

e−jφ=cosφ−jsinφ e^{-j\varphi} = cos\varphi - jsin\varphie−jφ=cosφ−jsinφ

复数:z=a+bjz = a + bjz=a+bj

​ z∗=a−bjz^* = a - bjz∗=a−bj

​ a=Re[z]a = Re[z]a=Re[z] , b=Im[z]b = Im[z]b=Im[z]

复数的极坐标形式:

因为a=rcosφa = rcos\varphia=rcosφ,b=rsinφb = rsin\varphib=rsinφ

所以 z=r(cosφ+jsinφ)z = r(cos\varphi + jsin\varphi)z=r(cosφ+jsinφ)

复数的指数表达形式:

z=r(cosφ+jsinφ)=rejφ=r∠φz = r(cos\varphi + jsin\varphi ) = re^{j\varphi} = r\angle \varphiz=r(cosφ+jsinφ)=rejφ=r∠φ

复数的运算:

  • 加法:z1=a1+b1jz_1 = a_1 + b_1jz1​=a1​+b1​j ,z2=a2+b2jz_2 = a_2 + b_2jz2​=a2​+b2​j => z1+z2=(a1+a2)+(b1+b2)jz_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)jz1​+z2​=(a1​+a2​)+(b1​+b2​)j

Tips:当进行相量加法时,应用复数的正常形式进行运算

  • 乘法:z1=r1ejφ1=r1∠φ1z_1 = r_1e^{j\varphi_1} = r_1\angle \varphi_1 z1​=r1​ejφ1​=r1​∠φ1​,z2=r2ejφ2=r2∠φ2z_2 = r_2e^{j\varphi_2} = r_2\angle \varphi_2z2​=r2​ejφ2​=r2​∠φ2​ => z1∗z2=r1r2∠φ1+φ2z1 * z2 = r_1r_2\angle \varphi_1 + \varphi_2z1∗z2=r1​r2​∠φ1​+φ2​

  • 除法: z1z2=r1r2∠φ1−φ2\frac{z_1}{z_2} = \frac{r1}{r2}\angle \varphi_1 - \varphi_2z2​z1​​=r2r1​∠φ1​−φ2​

相量变换与反相量变换

正弦函数的 相量(phasor) 是含幅值和相位角的复数,欧拉公式给出了指数函数和三角函数的关系

正弦电源:v(t)=Vmcos(wt+φ)=Re[Vm(cos(wt+φ)+jsin(wt+φ))]=Re[Vmej(wt+φ)]v(t) = V_mcos(wt + \varphi) = Re[V_m(cos(wt+\varphi) + jsin(wt+\varphi))] = Re[V_me^{j(wt + \varphi)}]v(t)=Vm​cos(wt+φ)=Re[Vm​(cos(wt+φ)+jsin(wt+φ))]=Re[Vm​ej(wt+φ)]

可以注意到VmejφV_me^{j\varphi}Vm​ejφ是一个既包含正弦函数幅值和相位角的复数,我们称这个复数为给定正弦函数的相量

相量(Phasor): V = VmejφV_me^{j\varphi}Vm​ejφ

相量变换: 我们称P[Vmcos(wt+φ)]P[V_mcos(wt+\varphi)]P[Vm​cos(wt+φ)] 为Vmcos(wt+φ)V_mcos(wt + \varphi)Vm​cos(wt+φ)的相量变换

其中P[Vmcos(wt+φ)]=Vmejφ=Vm∠φP[V_mcos(wt+\varphi )] = V_me^{j\varphi} = V_m\angle \varphiP[Vm​cos(wt+φ)]=Vm​ejφ=Vm​∠φ

反相量变换: 反相量变换即为相量变换的逆运算

P−1[Vmejφ]=Vmcos(wt+φ)P^{-1}[V_me^{j\varphi}] = V_mcos(wt + \varphi)P−1[Vm​ejφ]=Vm​cos(wt+φ)

相量变换的作用:

Phasor transform transfers the sinusoidal function from time domain to phasor domain, which is also called frequency domain

频率域下的无源电路元件

阻抗(impedance):Z^\hat{Z}Z^

电阻: V^=RI^⇒ZR=R\hat{V} = R\hat{I} \Rightarrow Z_R = RV^=RI^⇒ZR​=R

电感:V^=1jwCI^⇒ZL=jwL\hat{V} = \frac{1}{jwC} \hat{I} \Rightarrow Z_L = jwLV^=jwC1​I^⇒ZL​=jwL

电容:V^=jwLI^⇒Zc=1jwC\hat{V} = jwL\hat{I} \Rightarrow Z_c = \frac{1}{jwC}V^=jwLI^⇒Zc​=jwC1​ *Tips:*注意电容和电流的正负关系

频率域下的KCL和KVL

KCL:∑I^=0\sum \hat{I} = 0∑I^=0

KVL: ∑V^=0\sum \hat{V} = 0∑V^=0

频率域下的电压电流、阻抗串并关系不发生改变

PreviousChapter 5 RL 和 RC电路的固有响应和阶跃响应

Last updated 2 years ago

Was this helpful?

😫