😫Chapter 7 正弦稳态分析

by mjuicem

复数的基本概念

欧拉公式: ejφ=cosφ+jsinφe^{j\varphi} = cos\varphi + jsin\varphi

ejφ=cosφjsinφ e^{-j\varphi} = cos\varphi - jsin\varphi

复数:z=a+bjz = a + bj

z=abjz^* = a - bj

a=Re[z]a = Re[z]b=Im[z]b = Im[z]

复数的极坐标形式:

因为a=rcosφa = rcos\varphib=rsinφb = rsin\varphi

所以 z=r(cosφ+jsinφ)z = r(cos\varphi + jsin\varphi)

复数的指数表达形式:

z=r(cosφ+jsinφ)=rejφ=rφz = r(cos\varphi + jsin\varphi ) = re^{j\varphi} = r\angle \varphi

复数的运算:

  • 加法:z1=a1+b1jz_1 = a_1 + b_1jz2=a2+b2jz_2 = a_2 + b_2j => z1+z2=(a1+a2)+(b1+b2)jz_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)j

Tips:当进行相量加法时,应用复数的正常形式进行运算

  • 乘法:z1=r1ejφ1=r1φ1z_1 = r_1e^{j\varphi_1} = r_1\angle \varphi_1 z2=r2ejφ2=r2φ2z_2 = r_2e^{j\varphi_2} = r_2\angle \varphi_2 => z1z2=r1r2φ1+φ2z1 * z2 = r_1r_2\angle \varphi_1 + \varphi_2

  • 除法: z1z2=r1r2φ1φ2\frac{z_1}{z_2} = \frac{r1}{r2}\angle \varphi_1 - \varphi_2

相量变换与反相量变换

正弦函数的 相量(phasor) 是含幅值和相位角的复数,欧拉公式给出了指数函数和三角函数的关系

正弦电源:v(t)=Vmcos(wt+φ)=Re[Vm(cos(wt+φ)+jsin(wt+φ))]=Re[Vmej(wt+φ)]v(t) = V_mcos(wt + \varphi) = Re[V_m(cos(wt+\varphi) + jsin(wt+\varphi))] = Re[V_me^{j(wt + \varphi)}]

可以注意到VmejφV_me^{j\varphi}是一个既包含正弦函数幅值和相位角的复数,我们称这个复数为给定正弦函数的相量

相量(Phasor): V = VmejφV_me^{j\varphi}

相量变换: 我们称P[Vmcos(wt+φ)]P[V_mcos(wt+\varphi)]Vmcos(wt+φ)V_mcos(wt + \varphi)的相量变换

其中P[Vmcos(wt+φ)]=Vmejφ=VmφP[V_mcos(wt+\varphi )] = V_me^{j\varphi} = V_m\angle \varphi

反相量变换: 反相量变换即为相量变换的逆运算

P1[Vmejφ]=Vmcos(wt+φ)P^{-1}[V_me^{j\varphi}] = V_mcos(wt + \varphi)

相量变换的作用:

Phasor transform transfers the sinusoidal function from time domain to phasor domain, which is also called frequency domain

频率域下的无源电路元件

阻抗(impedance):Z^\hat{Z}

电阻: V^=RI^ZR=R\hat{V} = R\hat{I} \Rightarrow Z_R = R

电感:V^=1jwCI^ZL=jwL\hat{V} = \frac{1}{jwC} \hat{I} \Rightarrow Z_L = jwL

电容:V^=jwLI^Zc=1jwC\hat{V} = jwL\hat{I} \Rightarrow Z_c = \frac{1}{jwC} *Tips:*注意电容和电流的正负关系

频率域下的KCL和KVL

KCL:I^=0\sum \hat{I} = 0

KVL: V^=0\sum \hat{V} = 0

频率域下的电压电流、阻抗串并关系不发生改变

Last updated